Stat 8932: Random Matrices, High-dimensional Statistics and Related Topice
ثبت نشده
چکیده
So there 5 partitions for 4. Assign each partition with a probability, we then get a probability measure on them. Different ways of assigning probabilities: Uniform measure Plancherel measure Jack measure Restricted uniform measure Restricted Jack measure. We will study the properties of r.v.’s (k1, k2, . . .), a random partition of n. Example 2. As n→∞, under the Plancherel measure, k1 − 2 √ n n1/6 ⇒ FTW.
منابع مشابه
Stat 8932: Random Matrices, High-dimensional Statistics and Related Topice
So there 5 partitions for 4. Assign each partition with a probability, we then get a probability measure on them. Different ways of assigning probabilities: Uniform measure Plancherel measure Jack measure Restricted uniform measure Restricted Jack measure. We will study the properties of r.v.’s .k1; k2; : : :/, a random partition of n. Example 2. As n!1, under the Plancherel measure, k1 2 p n n...
متن کاملPhase transition in limiting distributions of coherence of high-dimensional random matrices
The coherence of a random matrix, which is defined to be the largest magnitude of the Pearson correlation coefficients between the columns of the random matrix, is an important quantity for a wide range of applications including high-dimensional statistics and signal processing. Inspired by these applications, this paper studies the limiting laws of the coherence of n× p random matrices for a f...
متن کاملIdentity tests for high dimensional data using RMT
In this work, we redefined two important statistics, the CLRT test (Bai et.al., Ann. Stat. 37 (2009) 3822-3840) and the LW test (Ledoit and Wolf, Ann. Stat. 30 (2002) 1081-1102) on identity tests for high dimensional data using random matrix theories. Compared with existing CLRT and LW tests, the new tests can accommodate data which has unknown means and nonGaussian distributions. Simulations d...
متن کاملJoint density of eigenvalues in spiked multivariate models
The classical methods of multivariate analysis are based on the eigenvalues of one or two sample covariance matrices. In many applications of these methods, for example to high dimensional data, it is natural to consider alternative hypotheses which are a low rank departure from the null hypothesis. For rank one alternatives, this note provides a representation for the joint eigenvalue density ...
متن کاملAPPLICATION OF THE RANDOM MATRIX THEORY ON THE CROSS-CORRELATION OF STOCK PRICES
The analysis of cross-correlations is extensively applied for understanding of interconnections in stock markets. Variety of methods are used in order to search stock cross-correlations including the Random Matrix Theory (RMT), the Principal Component Analysis (PCA) and the Hierachical Structures. In this work, we analyze cross-crrelations between price fluctuations of 20 company stocks...
متن کامل